+0  
 
0
3
1
avatar+286 

An ellipse and a hyperbola have the same foci, $A$ and $B$, and intersect at four points. The ellipse has major axis $24,$ and minor axis $13.$ The distance between the vertices of the hyperbola is $5$.  Let $P$ be one of the points of intersection of the ellipse and hyperbola. What is $PA \cdot PB$?

 Feb 20, 2025
 #1
avatar+130462 
+1

\( PA \cdot PB \)

 

Let the center of  both be (0,0)

 

Let the ellipse have its major axis along x....its equation is

x^2 / 12^2   + y^2 / (6.5)^2   = 1

 

The  foci  of the ellipse  =  (+/-  sqrt ( 12^2 - 6.5^5] , 0)  = ( +/- sqrt (407) / 2) , 0)

 

For  the hyperbola  the equation is

x^2/a^2  - y^2/b^2  =1

 

a^2 = 2.5^2  

c =  sqrt (407)/2

b^2  =  c^2  - a^2 =  407/4  -  2.5^2  =  191/2

 

The equation of the hyperbola is

 

x^2/ 2.5^2  - y^2/ (191/2)  =1

 

This is  a little difficult to solve  but here's a graphical solution using GeoGebra

 

PA = 9.5

PB =14.5

PA * PB  =  9.5 * 14.5 =  137.75

 

cool cool cool

 Feb 20, 2025

2 Online Users