We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Algebra

0
400
3

The positive integers A, B, and C form an arithmetic sequence while the integers B, C, and D form a geometric sequence. If (C/B) = (5/3), what is the smallest possible value of A + B + C + D?

Mar 21, 2018

### Best Answer

#2
+2

The positive integers A, B, and C form an arithmetic sequence while the integers B, C, and D form a geometric sequence. If (C/B) = (5/3), what is the smallest possible value of A + B + C + D?

arithmetic progression

A

B,

C= A+2(B-A)

geometric progression

B      r=C/B=5/3

B, B(5/3), B(5/3)^2

B,  5B/3,     25B/9

so

C=5B/3

D=25B/9

A, B, 5B/3, 25B/9

B - A = 5B/3 - B

2B-5B/3 = A

(2-5/3)B = A

A=B/3

$$A, B,C, D \\ \frac{B}{3},\;B, \;\frac{5B}{3},\;\frac{25B}{9}$$

These all have to be positive integers so B must be a multiple of 9, The smallest values are if B is 9

$$\frac{9}{3},\;9, \;\frac{45}{3},\;\frac{9*25}{9}\\ 3,\;9, \;15,\;25\\$$

So the smallest possible value for A+B+C+D = 3+9+15+25  = 52

Mar 22, 2018

### 3+0 Answers

#1
0

AP = 1, 3, 5...............etc.

GP = 3, 5, 8 1/3.........etc.

A + B + C + D =1 + 3 + 5 + 8 1/3 = 17 1/3

Mar 21, 2018
#2
+2
Best Answer

The positive integers A, B, and C form an arithmetic sequence while the integers B, C, and D form a geometric sequence. If (C/B) = (5/3), what is the smallest possible value of A + B + C + D?

arithmetic progression

A

B,

C= A+2(B-A)

geometric progression

B      r=C/B=5/3

B, B(5/3), B(5/3)^2

B,  5B/3,     25B/9

so

C=5B/3

D=25B/9

A, B, 5B/3, 25B/9

B - A = 5B/3 - B

2B-5B/3 = A

(2-5/3)B = A

A=B/3

$$A, B,C, D \\ \frac{B}{3},\;B, \;\frac{5B}{3},\;\frac{25B}{9}$$

These all have to be positive integers so B must be a multiple of 9, The smallest values are if B is 9

$$\frac{9}{3},\;9, \;\frac{45}{3},\;\frac{9*25}{9}\\ 3,\;9, \;15,\;25\\$$

So the smallest possible value for A+B+C+D = 3+9+15+25  = 52

Melody Mar 22, 2018
#3
0

Nice, Melody  !!!   CPhill  Mar 22, 2018