+0  
 
0
245
3
avatar

The positive integers A, B, and C form an arithmetic sequence while the integers B, C, and D form a geometric sequence. If (C/B) = (5/3), what is the smallest possible value of A + B + C + D?

Guest Mar 21, 2018

Best Answer 

 #2
avatar+94150 
+2

The positive integers A, B, and C form an arithmetic sequence while the integers B, C, and D form a geometric sequence. If (C/B) = (5/3), what is the smallest possible value of A + B + C + D?

 

arithmetic progression

A

B, 

C= A+2(B-A)

 

 

geometric progression

B      r=C/B=5/3

B, B(5/3), B(5/3)^2

B,  5B/3,     25B/9

so

C=5B/3

D=25B/9

 

A, B, 5B/3, 25B/9 

 

B - A = 5B/3 - B

2B-5B/3 = A

(2-5/3)B = A

A=B/3

 

\(A, B,C, D \\ \frac{B}{3},\;B, \;\frac{5B}{3},\;\frac{25B}{9} \)

 

These all have to be positive integers so B must be a multiple of 9, The smallest values are if B is 9

 

\( \frac{9}{3},\;9, \;\frac{45}{3},\;\frac{9*25}{9}\\ 3,\;9, \;15,\;25\\ \)

 

So the smallest possible value for A+B+C+D = 3+9+15+25  = 52

Melody  Mar 22, 2018
 #1
avatar
0

AP = 1, 3, 5...............etc.

GP = 3, 5, 8 1/3.........etc.

A + B + C + D =1 + 3 + 5 + 8 1/3 = 17 1/3

Guest Mar 21, 2018
 #2
avatar+94150 
+2
Best Answer

The positive integers A, B, and C form an arithmetic sequence while the integers B, C, and D form a geometric sequence. If (C/B) = (5/3), what is the smallest possible value of A + B + C + D?

 

arithmetic progression

A

B, 

C= A+2(B-A)

 

 

geometric progression

B      r=C/B=5/3

B, B(5/3), B(5/3)^2

B,  5B/3,     25B/9

so

C=5B/3

D=25B/9

 

A, B, 5B/3, 25B/9 

 

B - A = 5B/3 - B

2B-5B/3 = A

(2-5/3)B = A

A=B/3

 

\(A, B,C, D \\ \frac{B}{3},\;B, \;\frac{5B}{3},\;\frac{25B}{9} \)

 

These all have to be positive integers so B must be a multiple of 9, The smallest values are if B is 9

 

\( \frac{9}{3},\;9, \;\frac{45}{3},\;\frac{9*25}{9}\\ 3,\;9, \;15,\;25\\ \)

 

So the smallest possible value for A+B+C+D = 3+9+15+25  = 52

Melody  Mar 22, 2018
 #3
avatar+92843 
0

Nice, Melody  !!!

 

cool cool cool

CPhill  Mar 22, 2018

25 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.