+0  
 
+1
1
2
avatar+452 

Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.
Compute p^2 + q^2 + r^2 + s^2.

 Feb 23, 2025
 #1
avatar+111 
+1

he sum of the squares of the roots is -28

 Feb 23, 2025
 #2
avatar+130462 
+1

Simplify as

 

x^4 + 2x^3 + 16x^2 + 20x - 31

 

By Viete :

p + q + r + s  =  -2

 (pr + pq + ps + qr + qs + rs) = 16

 

So

( p + q + r + s)^2  =     (-2)^2  =  4  =

(p^2 + q^2 + r^2 + s^2)  +   2(pr + pq + ps + qr + qs + rs)  

 

And

2 (pr + pq + ps + qr + qs + rs) =  2(16) = 32

 

So

( p + q + r + s)^2  =     

(p^2 + q^2 + r^2 + s^2)  +   2(pr + pq + ps + qr + qs + rs)  =

(p^2 + q^2 + r^2 + s^2) +  32  =   4

 

(p^2 + q^2 + r^2 + s^2) =   -28

 

 

cool cool cool

 Feb 24, 2025

2 Online Users

avatar