Solve for the variable x in terms of y and z, assuming y \neq \frac{1}{2}: xy + x = \frac{3x + 2y + z + y + 2z}{3}
\(xy + x = \frac{3x + 2y + z + y + 2z}{3} \)
3x (y + 1) = 3x + 2y + z + y + 2z
3x (y+ 1) - 3x = 3y + 3z
3x (y + 1 - 1) = 3 (y + z)
x (y ) = (y + z)
( y + z)
x = _________
y