+0  
 
0
53
1
avatar

Find all real values of x such that
(x^2 + 2x + 5 - x - 4)(3x^2 - x - 4 + 2x + 8) >= 0

 Oct 24, 2022
 #1
avatar+118132 
+1

 

\((x^2 + 2x + 5 - x - 4)(3x^2 - x - 4 + 2x + 8) \ge 0\\ (x^2 + x + 1)(3x^2 + x +4) \ge 0\\ \qquad \text{consider the roots of}\; x^2+x+1\\ \qquad \triangle=b^2-4ac=1-4=-3<0 \qquad\text{ no real roots}\\ \qquad \text{consider the roots of}\; 3x^2+x+4\\ \qquad \triangle=b^2-4ac=1-48=-47<0 \qquad\text{ no real roots}\\ \)

 

Since the coefficiant of x^4 is positive, and there are not real roots. 

this funtion will always be positve.

x is in the set of real numbers (no restrictions) 

 Oct 24, 2022

37 Online Users

avatar