+0  
 
0
19
1
avatar+1286 

What is the coefficient of x in (x^3 + x^2 + x + 1)(x^4 + 3x^3 + 4x^2 + 8x + 7)?

 Jun 12, 2024

Best Answer 

 #1
avatar+1926 
+1

We could probably do this really hard way. 

By distributing every number, we get

\({x^{3}\left(x^{4}+3x^{3}+4x^{2}+8x+7\right)+x^{2}\left(x^{4}+3x^{3}+4x^{2}+8x+7\right)+x\left(x^{4}+3x^{3}+4x^{2}+8x+7\right)+1\left(x^{4}+3x^{3}+4x^{2}+8x+7\right)}\)

 

Simplfying, we have

\(x^{7}+4x^{6}+8x^{5}+16x^{4}+22x^{3}+19x^{2}+15x+7\)

 

As it clear shows\(15\) is the coefficient of x. 

 

So our final answer is 15. 

 

Thanks! :)

 Jun 12, 2024
 #1
avatar+1926 
+1
Best Answer

We could probably do this really hard way. 

By distributing every number, we get

\({x^{3}\left(x^{4}+3x^{3}+4x^{2}+8x+7\right)+x^{2}\left(x^{4}+3x^{3}+4x^{2}+8x+7\right)+x\left(x^{4}+3x^{3}+4x^{2}+8x+7\right)+1\left(x^{4}+3x^{3}+4x^{2}+8x+7\right)}\)

 

Simplfying, we have

\(x^{7}+4x^{6}+8x^{5}+16x^{4}+22x^{3}+19x^{2}+15x+7\)

 

As it clear shows\(15\) is the coefficient of x. 

 

So our final answer is 15. 

 

Thanks! :)

NotThatSmart Jun 12, 2024

2 Online Users