Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
35
1
avatar+972 

The quadratic equation $x^2-mx+24 = 10$ has roots $x_1$ and $x_2$. If $x_1$ and $x_2$ are integers, how many different values of $m$ are possible?

 Jun 8, 2024
 #1
avatar+1950 
+1

First, let's subtract 10 from both sides. x2mx+14

The answer to this question lies in the number of possible multiples 14 has. 

 

For every mutliple, there are 4 possibles. 

Say the two multiples are a,b

We have (xa)(xb),(x+a)(x+b),(x+a)(xb),(xa)(x+b)

 

For example, 2 and 7. 

(x7)(x+2),(x2)(x+7),(x2)(x7),(x+7)(x+2)These all give different values for m. 

 

We have only 2 possible groups. 1 and 14, 2 and 7. 

 

This means there are 4*2=8 different values for m

 

Thanks! :)

 Jun 8, 2024

0 Online Users