+0  
 
+1
5
2
1
avatar+483 

Let x, y, and z be real numbers. If x^2 + y^2 + z^2 = 1, then find the maximum value of
3x + 4y + 5z + x^3 + \frac{4x^2 y}{z} + \frac{z^5}{xy^2}

 Jul 12, 2025
 #1
avatar+15127 
+1

\(0\)

\(Find\ the\ maximum\ value\ of\ \ 3x + 4y + 5z + x^3 + \dfrac{4x^2 y}{z} + \dfrac{z^5}{xy^2}.\)

 

Plane geometry

\(z^2=x^2+y^2\ \color{green }Pythagorean\ theorem\\ \color{blue}y=x\\ z^2=2x^2\\ \color{blue}z=x\sqrt{2}\\ x^2+y^2+z^2=1\\ x^2+x^2+2x^2=1\\\)

\(4x^2=1\\ \color{blue}x=\dfrac{1}{2}\)

 

\(f(x)=3x + 4y + 5z + x^3 + \dfrac{4x^2 y}{z} + \dfrac{z^5}{xy^2}\\ f(x)=3x+4x+5x\sqrt{2}+x^3+\dfrac{4x^3}{x\sqrt{2}}+\dfrac{(x\sqrt{2})^5}{x^3}\\ f(x)=x^3+6\sqrt{2}x^2+5\sqrt{2}x+7x\ \color{green}according\ to\ WolframAlpha\\ f(x_{0.5})=0.5^3+6\sqrt{2}(0.5)^2+5\sqrt{2}(0.5)+7(0.5)=9.28185\\ \dfrac{d}{dx}=3x^2+3⋅2^{\frac{5}{2}}x+5√2+7=0\\ {\color{blue}x\in \{-4.6477};-1.009\}\)

 

 

\(f(x)_{max}=(-4.6477)^3+6\sqrt{2}(-4.6477)^2+5\sqrt{2}(-4.6477)+7(-4.6477)\\ \color{blue}f(x)_{max}=17.4979\)

 

smiley !

 Jul 14, 2025
edited by asinus  Jul 14, 2025
edited by asinus  Jul 15, 2025
edited by asinus  Jul 15, 2025
edited by asinus  Jul 18, 2025
edited by asinus  Jul 18, 2025

1 Online Users