Let $a$ and $b$ be complex numbers. If $a + b = 4$ and $a^2 + b^2 = 6,$ then what is $a^3 + b^3?$
We are given the equations:
a+b=4a + b = 4 a2+b2=6a^2 + b^2 = 6
We aim to determine the value of a3+b3a^3 + b^3.
Step 1: Express a2+b2a^2 + b^2 Using a+ba + b
Using the identity:
a2+b2=(a+b)2−2aba^2 + b^2 = (a+b)^2 - 2ab
Substituting the known values:
6=42−2ab6 = 4^2 - 2ab 6=16−2ab6 = 16 - 2ab 2ab=102ab = 10 ab=5ab = 5
Step 2: Compute a3+b3a^3 + b^3
Using the identity:
a3+b3=(a+b)(a2−ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2)
Since we already know a+b=4a+b = 4, a2+b2=6a^2 + b^2 = 6, and ab=5ab = 5, we compute:
a2−ab+b2=6−5=1a^2 - ab + b^2 = 6 - 5 = 1
Thus,
a3+b3=4×1=4a^3 + b^3 = 4 \times 1 = 4
Final Answer:
{4}
We are given the equations:
a+b=4a + b = 4 a2+b2=6a^2 + b^2 = 6
We aim to determine the value of a3+b3a^3 + b^3.
Step 1: Express a2+b2a^2 + b^2 Using a+ba + b
Using the identity:
a2+b2=(a+b)2−2aba^2 + b^2 = (a+b)^2 - 2ab
Substituting the known values:
6=42−2ab6 = 4^2 - 2ab 6=16−2ab6 = 16 - 2ab 2ab=102ab = 10 ab=5ab = 5
Step 2: Compute a3+b3a^3 + b^3
Using the identity:
a3+b3=(a+b)(a2−ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2)
Since we already know a+b=4a+b = 4, a2+b2=6a^2 + b^2 = 6, and ab=5ab = 5, we compute:
a2−ab+b2=6−5=1a^2 - ab + b^2 = 6 - 5 = 1
Thus,
a3+b3=4×1=4a^3 + b^3 = 4 \times 1 = 4
Final Answer:
{4}