+0  
 
+1
5
2
avatar+452 

Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.

Compute p^2 qrs + pq^2 rs + pqr^2 s + pqrs^2.

 Feb 23, 2025
 #1
avatar+113 
+1

The value of the expression 

p2qrs+pq2rs+pqr2s+pqrs2

𝑝2π‘žπ‘Ÿπ‘ +π‘π‘ž2π‘Ÿπ‘ +π‘π‘žπ‘Ÿ2𝑠+π‘π‘žπ‘Ÿπ‘ 2

 is 

answer is 62!

 Feb 23, 2025
 #2
avatar+130474 
+1

3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.

 

Simplify  as

 

x^4 + 2x^3 + 16x^2  + 20x - 31

 

Note that

 

p^2 qrs + pq^2 rs + pqr^2 s + pqrs^2  can be written as

 

pqrs  ( p + q + r + s)

 

The sum of the roots  =  -2/1   =  -2

The product of the roots   -31/1   =   -31

 

So

 

-31 (-2)  =  62

 

cool cool cool

 Feb 23, 2025

0 Online Users