Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
12
4
avatar+4 

How many points of the form (x,y), where both coordinates are positive integers, lie below the graph of the hyperbola xy=16?

 

Thanks in advance!

 Jul 24, 2024
 #1
avatar+1208 
0

I'm getting an answer of 42.  I will post the solution later.

 Jul 24, 2024
edited by AnswerscorrectIy  Jul 24, 2024
 #3
avatar+1556 
0

To determine the number of points of the form (x,y), where both coordinates are positive integers, that lie below the graph of the hyperbola xy=16, we need to find the integer pairs (x,y) such that xy<16.

 

### Step-by-Step Solution:

 

1. **Identify the Range for x**:


   - For each x, we need y to be an integer such that xy<16.


   - Since x must be a positive integer, consider possible values of x starting from 1 up to the point where x1=16, so x ranges from 1 to 15.

 

2. **Count y Values for Each x**:


   - For each x, find the largest integer y such that y<16x.

 

   Here’s how this works for each x from 1 to 15:


   - x=1: xy<16y<161=16. So, y can be 1 to 15 (15 values).


   - x=2: xy<16y<162=8. So, y can be 1 to 7 (7 values).


   - x=3: xy<16y<1635.33. So, y can be 1 to 5 (5 values).


   - x=4: xy<16y<164=4. So, y can be 1 to 3 (3 values).


   - x=5: xy<16y<165=3.2. So, y can be 1 to 3 (3 values).


   - x=6: xy<16y<1662.67. So, y can be 1 to 2 (2 values).


   - x=7: xy<16y<1672.29. So, y can be 1 to 2 (2 values).


   - x=8: xy<16y<168=2. So, y can be 1 (1 value).


   - x=9 to x=15: For these values, y<16x will always be less than 2, so y can only be 1 (1 value each).

 

3. **Summarize the Counts**:


   \[
   \begin{aligned}


   &15 \text{ values for } x = 1, \\


   &7 \text{ values for } x = 2, \\


   &5 \text{ values for } x = 3, \\


   &3 \text{ values for } x = 4, \\


   &3 \text{ values for } x = 5, \\


   &2 \text{ values for } x = 6, \\


   &2 \text{ values for } x = 7, \\


   &1 \text{ value for } x = 8, \\


   &1 \text{ value each for } x = 9 \text{ to } 15.


   \end{aligned}


   \]

   Adding these up:


   15+7+5+3+3+2+2+1+1+1+1+1+1+1+1=44

 

Therefore, the number of points (x,y), where both coordinates are positive integers, that lie below the graph of the hyperbola xy=16 is:
44

 Jul 24, 2024
 #4
avatar+2729 
0

To determine how many points (x,y) where both x and y are positive integers lie below the hyperbola xy=16, we need to find the integer pairs (x,y) such that xy<16.

 

### Step-by-Step Solution:

 

1. **Consider values of x and find corresponding y values**:


   For each x, y must satisfy 1y<16x.

 

2. **Calculate pairs for each x**:


   - x=1:


     xy<16y<161y<16y=1,2,3,,15(15 values)


   - x=2:
     xy<16y<162y<8y=1,2,3,,7(7 values)


   - x=3:
     xy<16y<163y<5.33y=1,2,3,4,5(5 values)


   - x=4:
     xy<16y<164y<4y=1,2,3(3 values)


   - x=5:
     xy<16y<165y<3.2y=1,2,3(3 values)


   - x=6:
     xy<16y<166y<2.67y=1,2(2 values)


   - x=7:
     xy<16y<167y<2.29y=1,2(2 values)


   - x=8:
     xy<16y<168y<2y=1(1 value)


   - x=9 and higher:
     xy<16y<16xy<16xy=1(1 value if x15 else no values)

 

3. **Count the total number of pairs**:


   Summing all the valid y values for each x:
   15+7+5+3+3+2+2+1+1=39

 

Therefore, there are 39 points of the form (x,y) where both coordinates are positive integers and lie below the hyperbola xy=16.

 Jul 24, 2024

1 Online Users