How many points of the form (x,y), where both coordinates are positive integers, lie below the graph of the hyperbola xy=16?
Thanks in advance!
To determine the number of points of the form (x,y), where both coordinates are positive integers, that lie below the graph of the hyperbola xy=16, we need to find the integer pairs (x,y) such that xy<16.
### Step-by-Step Solution:
1. **Identify the Range for x**:
- For each x, we need y to be an integer such that xy<16.
- Since x must be a positive integer, consider possible values of x starting from 1 up to the point where x⋅1=16, so x ranges from 1 to 15.
2. **Count y Values for Each x**:
- For each x, find the largest integer y such that y<16x.
Here’s how this works for each x from 1 to 15:
- x=1: xy<16⟹y<161=16. So, y can be 1 to 15 (15 values).
- x=2: xy<16⟹y<162=8. So, y can be 1 to 7 (7 values).
- x=3: xy<16⟹y<163≈5.33. So, y can be 1 to 5 (5 values).
- x=4: xy<16⟹y<164=4. So, y can be 1 to 3 (3 values).
- x=5: xy<16⟹y<165=3.2. So, y can be 1 to 3 (3 values).
- x=6: xy<16⟹y<166≈2.67. So, y can be 1 to 2 (2 values).
- x=7: xy<16⟹y<167≈2.29. So, y can be 1 to 2 (2 values).
- x=8: xy<16⟹y<168=2. So, y can be 1 (1 value).
- x=9 to x=15: For these values, y<16x will always be less than 2, so y can only be 1 (1 value each).
3. **Summarize the Counts**:
\[
\begin{aligned}
&15 \text{ values for } x = 1, \\
&7 \text{ values for } x = 2, \\
&5 \text{ values for } x = 3, \\
&3 \text{ values for } x = 4, \\
&3 \text{ values for } x = 5, \\
&2 \text{ values for } x = 6, \\
&2 \text{ values for } x = 7, \\
&1 \text{ value for } x = 8, \\
&1 \text{ value each for } x = 9 \text{ to } 15.
\end{aligned}
\]
Adding these up:
15+7+5+3+3+2+2+1+1+1+1+1+1+1+1=44
Therefore, the number of points (x,y), where both coordinates are positive integers, that lie below the graph of the hyperbola xy=16 is:
44
To determine how many points (x,y) where both x and y are positive integers lie below the hyperbola xy=16, we need to find the integer pairs (x,y) such that xy<16.
### Step-by-Step Solution:
1. **Consider values of x and find corresponding y values**:
For each x, y must satisfy 1≤y<16x.
2. **Calculate pairs for each x**:
- x=1:
xy<16⟹y<161⟹y<16⟹y=1,2,3,…,15(15 values)
- x=2:
xy<16⟹y<162⟹y<8⟹y=1,2,3,…,7(7 values)
- x=3:
xy<16⟹y<163⟹y<5.33⟹y=1,2,3,4,5(5 values)
- x=4:
xy<16⟹y<164⟹y<4⟹y=1,2,3(3 values)
- x=5:
xy<16⟹y<165⟹y<3.2⟹y=1,2,3(3 values)
- x=6:
xy<16⟹y<166⟹y<2.67⟹y=1,2(2 values)
- x=7:
xy<16⟹y<167⟹y<2.29⟹y=1,2(2 values)
- x=8:
xy<16⟹y<168⟹y<2⟹y=1(1 value)
- x=9 and higher:
xy<16⟹y<16x⟹y<16x⟹y=1(1 value if x≤15 else no values)
3. **Count the total number of pairs**:
Summing all the valid y values for each x:
15+7+5+3+3+2+2+1+1=39
Therefore, there are 39 points of the form (x,y) where both coordinates are positive integers and lie below the hyperbola xy=16.