+0  
 
+1
3
2
avatar+806 

Find all real x where
2 \cdot \frac{x - 5}{x - 3} > \frac{2x - 5}{x + 2} + 20.
Give your answer in interval notation.

 Mar 15, 2025
 #1
avatar+15080 
+1

Find all real x for

 

        I                II

\(\color{blue}2 \cdot \frac{x - 5}{x - 3} > \frac{2x - 5}{x + 2} + 20\\ .\\ f(x)=2 \cdot \frac{x - 5}{x - 3} - \frac{2x - 5}{x + 2} -20>0\\ 2(x-5)(x+2)-(2x-5)(x-3)-20(x-3)(x+2)>0\\ (2x-10)(x+2)-(2x^2-6x-5x+15)-20(x^2+2x-3x-6)>0\)

\(2x^2+4x-10x-20-2x^2+11x-15-20x^2-40x+60x+120>0\\ f(x)=-20x^2+25x+85>0\)

\(x_{1,2} = {-b \pm \sqrt{b^2-4ac} \over 2a}\\ x_{1,2} = {-25 \pm \sqrt{25^2+4\cdot 20\cdot 85} \over -40}\\ x_0\in \{-1.5292,2.7792\}\\\)

\(The\ extreme\ points\ of\ the\ hyperbolas\ I\ and\ II\ are\ x_I=3\ and\ x_{II}=-2.\)

\(In\ the\ calculated\ range\ is\\ (2 \cdot \frac{x - 5}{x - 3} ){\color{red}\ <}\ (\frac{2x - 5}{x + 2} + 20)\\ x\in \mathbb R\ (-1.52921099245< x< 2.77921099245)\\\)

\(The\ extreme\ points\ of\ the\ hyperbolas\ I\ and\ II\ are\ x_I=3\ and\ x_{II}=-2.\\ \color{blue }This\ gives:\\ (2 \cdot \frac{x - 5}{x - 3} )\ {\color{red}>}\ (\frac{2x - 5}{x + 2} + 20)\\ \color{blue}x\in \mathbb R(-2 <-1.5292)\\ and\\ \color{blue}x=\mathbb R(2.7792 <3)\)

 

laugh !

 Mar 15, 2025
edited by asinus  Mar 16, 2025
edited by asinus  Mar 16, 2025
edited by asinus  Mar 16, 2025
edited by asinus  Mar 16, 2025
edited by asinus  Mar 16, 2025
edited by asinus  Mar 17, 2025
 #2
avatar+15080 
+1

\(This\ gives:\\ (2 \cdot \frac{x - 5}{x - 3} )\ {\color{red}>}\ (\frac{2x - 5}{x + 2} + 20)\)

\(x\in \mathbb R\)(-2 < x < -1.5292)

and

\(x\in \mathbb R\)(2.7792 < x < 3)

 

Sorry. It didn't display correctly in answer 1#.

laugh !

 Mar 16, 2025
edited by asinus  Mar 16, 2025

2 Online Users

avatar