\(2x^2+4x-1=x^2-8x+3\)
We can make this is the form
\(ax^2+bx+c=0\)
We get:
\(x^2+12x-4=0\)
a = 1, b = 12, and c = -4.
Using the quadratic formula \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\), we get:
\(x = {-12 \pm \sqrt{12^2+16} \over 2}\)
\(x = {-12 \pm \sqrt{160} \over 2}\)
\(x = {-12 - \sqrt{160} \over 2}\), \(x = {-12 + \sqrt{160} \over 2}\)
Now we can square both values of x and then add them:
-151.894663844 + 0.10533615595 = -151.789327688
Answer: -151.789327688
Re-arrange to
x^2 +12x -4 = 0 complete the square
(x+6)^2 = 4 + 36
x+6 = +- sqrt 40
x = - 6 +- sqrt 40 <==== these are the roots
Now square the roots
(-6 + sqrt 40)2 = 76 - 12 sqrt 40
(-6 - sqrt 40)2 = 76 +12 sqrt 40
added together = 76 + 76 = + 152
Simplify as
x^2 + 12x - 4 = 0
Call the roots a,b
Product of roots
ab = -4
2ab = -8
Sum of roots
a + b = -12 square both sides
a^2 + 2ab + b^2 = 144
a^2 + b^2 -8 =144
a^2 + b^2 = 152
PLug in the quadratic formula:\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)