+0  
 
0
2
1
avatar+1537 

The quadratic equation $x^2-mx+24 = 10$ has roots $x_1$ and $x_2$. If $x_1$ and $x_2$ are integers, how many different values of $m$ are possible?

 Oct 25, 2024
 #1
avatar+1233 
+1

 

The quadratic equation $x^2-mx+24 = 10$ has roots $x_1$ and $x_2$. If $x_1$ and $x_2$ are integers, how many different values of $m$ are possible?   

 

                                                 x^2-mx+24 = 10     

Combine terms and put in    

formatting as ax2 + bx + c           x2 – mx + 14 = 0      

 

The roots will be integers   

that multiply to 14                  The roots can be    +1 & +14    

                                                                            –1 & –14    

                                                                            +2 & +7    

                                                                     or    –2 & –7    

 

So, m has four possible values, namely +15, –15, +9, or –9    

.   

 Oct 25, 2024

3 Online Users

avatar
avatar