+0  
 
0
340
4
avatar

what is x in each problem ? 1.) 6-log1/2x=3

 

2.) log (4x-3) +6 = 4

 

3.) 2/3log5x =2

 

4.) 2log 250x-6 =4

 

5.) 5-2logx=1/2

 

 

the base for each log is 10

Guest Mar 24, 2017
 #1
avatar
0

1)    

Solve for x:
6 + (log(4 x - 3))/(log(10)) = 4

Subtract 6 from both sides:
(log(4 x - 3))/(log(10)) = -2

Multiply both sides by log(10):
log(4 x - 3) = -2 log(10)

-2 log(10) = log(1/10^2) = log(1/100):
log(4 x - 3) = log(1/100)

Cancel logarithms by taking exp of both sides:
4 x - 3 = 1/100

Add 3 to both sides:
4 x = 301/100

Divide both sides by 4:
Answer: |x = 301/400

Guest Mar 24, 2017
 #3
avatar+7023 
0

That was question 2.

MaxWong  Mar 24, 2017
 #2
avatar+7023 
0

1)\(6 - \log \dfrac{1}{2} x = 3\\ \log \dfrac{1}{2} x = 6 - 3 = 3\\ \dfrac{1}{2}x=10^3\\ x = 2\times 10^3 = 2000\)

 

2)\(\log(4x-3)+6 = 4\\ \log(4x-3)=-2\\ 4x-3 = 10^{-2}=\dfrac{1}{100}\\ 4x = \dfrac{301}{100}\\ x=\dfrac{301}{400}\)

 

3)\(\dfrac{2}{3}\log(5x) = 2\\ \log(5x) = 3\\ 5x = 10^3 = 1000\\ x = 200\)

 

4)\(2\log(250x)-6 = 4\\ 2\log(250x) = 10\\ \log(250x)=5\\ 250x = 10^5 = 100000\\ x = 400\)

 

5)\(5-2\log x = \dfrac{1}{2}\\ 2\log x = 5-\dfrac{1}{2}=\dfrac{9}{2}\\ \log x = \dfrac{9}{4}\\ x = 10^{9/4}=\sqrt[4]{10^9}=100\cdot\sqrt[4]{10}\)

MaxWong  Mar 24, 2017
 #4
avatar+7023 
0

If my assumptions are wrong, tell me.

MaxWong  Mar 24, 2017

37 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.