Find the value of \(\cfrac{1}{1 + \cfrac{1}{4 + \cfrac{1}{1 + \cfrac{1}{4 + \dotsb}}}}.\)
Let the continued fraction = x
So we have
x = 1
______
1 + 1
____ simplify
4 + x
x = 1
________
[4 + x + 1]
__________
[ 4 + x ]
x = [ x + 4 ] / [ x + 5]
x^2 + 5x = x + 4
x^2 + 4x = 4
x^2 + 4x + 4 = 4 + 4
(x +2)^2 = 8 take the positive root
x + 2 = 2sqrt (2)
x = 2sqrt 2 - 2 = 2 ( sqrt 2 - 1)