+0  
 
0
20
2
avatar

Find the smallest value of x such that  x^2 + 10x + 25 = 49.

 
 Oct 13, 2021
 #1
avatar
+1

First minus 49 both sides

\(x^2 + 10x - 24 = 0\)

Using the Quadratic cross method ( https://www.youtube.com/watch?v=at7MIBm-it8&ab_channel=MisterBrash )

\((x-2)(x+12) = 0\)

So \(x\) have to be either 2 or -12. And we are finding the smallest value so it's -12

 
 Oct 14, 2021
 #2
avatar
+1

 

Find the smallest value of x such that  x^2 + 10x + 25 = 49.    

 

                                                 x2 + 10x + 25  =  49 

 

Subtract 49 from both sides      x2 + 10x – 24  =  0  

 

Factor left side                          (x + 12)(x – 2)  =  0  

 

Set each factor to zero                        (x + 12)  =  0   

                                                            (x – 2)  =  0   

 

So    x = –12  and  x = +2    The smaller of these is x = –12  

.

 
 Oct 14, 2021

18 Online Users

avatar