Since x - 1/x = 5 ---> (x - 1/x)3 = 53
Multiplying out:
---> x3 - 3(x)2(1/x) + 3(x)(1/x)2 - 1/x3 = 125
---> [x3 - 1/x3] + [ - 3(x)2(1/x) + 3(x)(1/x)2 ] = 125
But: -3(x)2(1/x) + 3(x)(1/x)2 = -3x + 3/x = -3(x - 1/x) = -3(5) = -15
So: [x3 - 1/x3] + [ - 3(x)2(1/x) + 3(x)(1/x)2 ] = 125
---> [x3 - 1/x3] + [ - 15 ] = 125
---> x3 - 1/x3 = 140