Find all possible values of a, if the equations ax^2+5x+1=4x^2+7x-4 has two different real roots
Find all possible values of a, if the equations ax^2+5x+1=4x^2+7x-4 has two different real roots
Hello Guest!
\(ax^2+5x+1=4x^2+7x-4\\ ax^2-4x^2+5x-7x+1+4=0\\ (a-4)x^2-2x+5=0\)
\(a\in\mathbb R\ |\) \(-\infty\) \(<\) \(a\) \(<\ 4.2\) \(and\) \(\ a\neq 4\)
With \(a\in\{4,4.2\}\), the equations have only one real root.
!