Processing math: 100%
 
+0  
 
0
42
1
avatar+1518 

Find all ordered pairs x, y of real numbers such that x+y=10 and x^2+y^2=64.
For example, to enter the solutions (2, 4) and (-3, 9), you would enter "(2,4),(-3,9)" (without the quotation marks).

 Jun 8, 2024
 #1
avatar+135 
0

To solve this, let's first isolate a.

 

(a+b)2=102

a2+2ab+b2=100

64+2ab=100

2ab=36

ab=18

b=10a

a(10a)=18

a2+10a18=0

a210a+18=0

 

Now, we can solve for a

 

a210a+25=7

(a5)2=7

a5=±7

a=5±7

 

We can now finally solve for b by plugging in each value of a.

 

a = (5 + sqrt(7)):

(5+7)+b=10

b=57

 

a = (5 - sqrt(7)):

(57)+b=10

b=5+7

 

Therefore, the solutions are (5 + sqrt(7), 5 - sqrt(7)) and (5 - sqrt(7), 5 + sqrt(7))

 Jun 9, 2024

3 Online Users

avatar