+0  
 
0
13
1
avatar+939 

Find the constant k such that the quadratic 2x^2 + 3x + 8x - x^2 + 4x + k has a double root.

 Jul 14, 2024

Best Answer 

 #1
avatar+1318 
+1

 

                                               2x^2 + 3x + 8x - x^2 + 4x + k   

 

Combine like terms                 x2 + 15x + k   

 

When the quadratic is in the format like the above,    

to have a double root (also called a repeated root),    

the constant is the square of half the coefficient of x.    

 

Coefficient of x is 15. 

Half of 15 equals 7.5. 

7.5 squared is 56.25.               So, k = 56.25   

.   

 Jul 14, 2024
 #1
avatar+1318 
+1
Best Answer

 

                                               2x^2 + 3x + 8x - x^2 + 4x + k   

 

Combine like terms                 x2 + 15x + k   

 

When the quadratic is in the format like the above,    

to have a double root (also called a repeated root),    

the constant is the square of half the coefficient of x.    

 

Coefficient of x is 15. 

Half of 15 equals 7.5. 

7.5 squared is 56.25.               So, k = 56.25   

.   

Bosco Jul 14, 2024

2 Online Users