\(f(x)=5x^2 - 2x + 8 - 2x^2 + 6x + 2\\ f(x)=3x^2+4x+10=0\\ \)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\\ b^2-4ac=16-4\cdot 3\cdot 10=-104\\ (b^2-4ac)<0\)
The discriminant is less than zero. The function has no zero, no solution.
!
Find the discriminant of the quadratic 5x^2 - 2x + 8 - 2x^2 + 6x + 2.
When a quadratic is arranged in standard format, ax2 + bx + c = 0,
the discriminant is given by b2 – 4ac.
Combine like terms in the quadratic of interest and arrange in standard format.
3x2 + 4x + 10
b2 – 4ac
42 – (4)(3)(10)
16 – 120
–104 is the discriminant
.