Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.
Compute \frac{1}{p} + \frac{1}{q} + \frac{1}{r} + \frac{1}{s}.
The sum of the reciprocals of the roots is 20/31
Simplify as
x^4 + 2x^3 + 16x^2 + 20x - 31
(pqr + pqs + prs + qrs) = -20
pqrs = -31
1/p + 1/q + 1/r + 1/s =
[ pqr + pqs + prs + qrs ] / pqrs = -20 / -31 = 20 / 31