+0  
 
+1
1
2
avatar+452 

Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.

 

Compute \frac{1}{p} + \frac{1}{q} + \frac{1}{r} + \frac{1}{s}.

 Feb 23, 2025
 #1
avatar+111 
+1

 The sum of the reciprocals of the roots is 20/31

 Feb 23, 2025
 #2
avatar+130462 
+1

Simplify as

x^4 + 2x^3 + 16x^2 + 20x  - 31

 

(pqr  + pqs + prs + qrs)  =  -20

pqrs = -31

 

1/p  + 1/q + 1/r + 1/s =  

 

[ pqr + pqs + prs + qrs ]  /  pqrs  =    -20  / -31   =  20 / 31

 

cool cool cool

 Feb 26, 2025

1 Online Users

avatar