+0  
 
0
5
1
avatar+286 

Find the constant k so that the equation
4x^2 + 9y^2 - 8x + 54y + k = 2x^2 + 5y^2 - 12x + 34y
represents an ellipse which has an area of 6 \pi.

 Feb 19, 2025
 #1
avatar+130462 
+1

Simplify as

 

2x^2 + 4x  + 4y^2  + 20y   =  -k    complete the square on  x and  y

 

2(x^2 + 2x  + 1)  + 4(y^2 + 5y + 25/4)  =  -k  + 2  + 25

 

2 ( x + 1)^2   +  4( y + 5/2)^2  =  27  - k

 

(x + 1)^2 / (1/2)  + (y + 5/2)^2  / (1/4)  = 27  - k     divide both sides by (27 -k)

 

( x + 1)^2 / [ (1/2)(27 -k)]  +  (y+ 5/2)^2 / [(1/4) (27 -k) ]  =  1

 

a^2  =  (27 - k) / 2       b^2  = (27 - k) / 4

 

a =  sqrt [(27 -k) /2 ]    b = sqrt [ (27 -k) /4)]

 

Area =  pi * a * b   =  6  pi ......so

 

pi * a * b   = 6 pi

 

  a *b   = 6

 

sqrt  [ (27 -k) / 2   *  (27 -k) /4 ]  =  6

 

(27 - k) / sqrt 8  =  6

 

(27 - k) / (2sqrt 2) = 6

 

27 -k  =  6 * 2sqrt 2

 

27 - k  = 12sqrt 2

 

k  =  27 - 12sqrt 2

 

 

cool cool cool

 Feb 20, 2025

2 Online Users

avatar
avatar