+0  
 
0
15
1
avatar+964 

Let $x$ and $y$ be real numbers. If $x^2 + 3y^2 = 18$, then find the maximum value of $x + y$.

 Jun 9, 2024
 #1
avatar+129895 
+1

x^2 + 3y^2   =18

 

Take the derivative with respect to x and  set to 0

2x = 0

 

Take the derivative with respect to y and set to 0

6y = 0

 

This implies that   2x  = 6y

y = (1/3)x

 

So

 

x^2  + 3 [(1/3) x]^2  = 18

 

(4/3]x^2 =18

 

x^2  = 54/4 

 

x =  sqrt [54/4]    =  sqrt [27/2]  =  3sqrt (3)  /sqrt (2)  = (3/2)sqrt 6

 

y = (1/2)sqrt 6

 

Max is

 x + y =    (3/2)sqrt (6)  + (1/2)sqrt (6)  =    2sqrt 6

 

cool cool cool

 Jun 10, 2024

2 Online Users

avatar