Let a and b be the roots of the quadratic x^2 - 5x + 3 = 2x^2 + 15x - 10. Find the quadratic whose roots are a^2 + a + 1 and b^2 + b + 1.
Simplifying, the quadratic equation is x2+20x−13=0. Therefore, a + b = -20 and ab = -13.
Now,
(a2+a+1)+(b2+b+1)=(a2+b2)+(a+b)+2=(a+b)2−2ab+(a+b)+2=400+26−20+2=408
Also,
(a2+a+1)(b2+b+1)=(a3−1)(b3−1)(a−1)(b−1)=(ab)3−(a3+b3)+1ab−(a+b)+1=(ab)3−(a+b)3+3ab(a+b)+1ab−(a+b)+1=823
Hence, the required equation is x2−408x+823=0.