Let a1, a2, a3, ... be an arithmetic sequence. Let Sn denote the sum of the first n terms. If S_5 = 1/5 and S_10 = 1/10, then find S_15.
Let d=a2−a1. Note that S5=5a1+(d+2d+3d+4d)=5a1+10d, and S10=10a1+(d+2d+⋯+9d)=10a1+45d, and S15=15a1+(d+2d+⋯+14d)=15a1+105d.
So, the given conditions are {5a1+10d=1510a1+45d=110. Solving gives d=−3250 and a1=8125.
So S15=15a1+105d=−310.