Solve\(\begin{align*} 2^{a + 3} + 3^{b + 1} &= 33 \\ 2^{2a - 1} + 3^{b + 2} &= 11 \end{align*}\)
How can I start?
To start:
2a + 3 + 3b + 1 = 33 ---> 8·2a + 3·3b = 33 ---> 3·3b = 33 - 8·2a
---> 3b = ( 33 - 8·2a ) / 3
22a - 1 + 3b + 2 = 11 ---> ½·22a + 9·3b = 11 ---> 9·3b = 11 - ½·22a
---> 3b = ( 11 - ½·22a ) / 9
Setting these equal to each other: ( 33 - 8·2a ) / 3 = ( 11 - ½·22a ) / 9
Multiply by 9: 3·( 33 - 8·2a ) = ( 11 - ½·22a )
99 - 24·2a = 11 - ½·22a
Multiply by 2: 198 - 48·2a = 22 - 22a
22a - 48·2a - 176 = 0
Factor: (2a - 4)(2a - 44) = 0
So, either: 2a = 4 ---> a = 2
or: 2a = 44 ---> a = log(44) / log(2)
etc ....