We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
602
5
avatar+601 

a) Find the square roots of $3+4i$.

 

b) Find all cube roots of 8i.
 

where i=sqrt-1

 Dec 12, 2017
 #2
avatar+22905 
+2

Algrebra Help

 

a) Find the square roots of \( 3+4i\).

\(\begin{array}{rcll} z= a+bi &=& 3+4i \\ |z| &=& \sqrt{a^2+b^2} \\ &=& \sqrt{3^2+4^2} \\ &=& 5 \\ \sin(\varphi) &=& \frac{b}{|z|} \\ &=& \frac{4}{5} \\ &=& 0.8 \\ \varphi &=& \arcsin(0.8) +2k\pi \\\\ z &=& |z|e^{i\varphi} \\ \mathbf{z} & \mathbf{=} & \mathbf{5e^{i\cdot ( \arcsin(0.8)+2k\pi) }} \\ \end{array}\)

 

\(\begin{array}{|rcll|} \hline \sqrt{3+4i} \\ &=& (3+4i)^{\frac12} \\ &=& 5^{\frac12} \left( e^{i\cdot ( \arcsin(0.8)+2k\pi) }\right)^{\frac12} \\ &=& \sqrt{5}\cdot e^{i\cdot \left( \frac{\arcsin(0.8)+2k\pi}{2}\right)} \\ &=& \sqrt{5}\cdot e^{i\cdot \left( \frac{\arcsin(0.8)}{2}+k\pi\right)} \quad & | \quad k =(0,1) \\\\ \sqrt{3+4i} &=& \sqrt{5}\cdot e^{i\cdot \left( \frac{\arcsin(0.8)}{2}\right)} \quad & | \quad k = 0 \\ &=& \sqrt{5} \cdot \left( \cos( \frac{\arcsin(0.8)}{2} ) + i \cdot \sin(\frac{\arcsin(0.8)}{2}) \right) \\ &=& 2.23606797750 \cdot \left( 0.89442719100 + i \cdot 0.44721359550 \right) \\ &=& 2+i\cdot 1 \\\\ \sqrt{3+4i} &=& \sqrt{5}\cdot e^{i\cdot \left( \frac{\arcsin(0.8)}{2}+\pi\right)} \quad & | \quad k = 1 \\ &=& \sqrt{5} \cdot \left( \cos( \frac{\arcsin(0.8)}{2}+\pi ) + i \cdot \sin(\frac{\arcsin(0.8)}{2}+\pi) \right) \\ &=& \sqrt{5} \cdot \left( -\cos( \frac{\arcsin(0.8)}{2}) - i \cdot \sin(\frac{\arcsin(0.8)}{2}) \right) \\ &=& 2.23606797750 \cdot \left( -0.89442719100 - i \cdot 0.44721359550 \right) \\ &=& -2-i\cdot 1 \\\\ \hline \end{array}\)

 

All 2nd roots of \(3+4 i\) :

\(2+i \\ -2-i \)

 

laugh

 Dec 12, 2017
 #3
avatar+22905 
+1

Algrebra Help

 

b) Find all cube roots of 8i.

\(\begin{array}{|rcll|} \hline && \sqrt[3]{8i} \\ &=& \sqrt[3]{8}\cdot \sqrt[3]{i} \\ &=& \sqrt[3]{2^3}\cdot \sqrt[3]{i} \\ &=& 2\cdot \sqrt[3]{i} \\ \hline \end{array}\)

 

\(\begin{array}{rcll} z= a+bi &=& i \\ |z| &=& \sqrt{0^2+1^2} \\ &=& \sqrt{1} \\ &=& 1 \\ \sin(\varphi) &=& \frac{b}{|z|} \\ &=& \frac{1}{1} \\ &=& 1 \\ \varphi &=& \arcsin(1) +2k\pi \\ \varphi &=& \frac{\pi}{2} +2k\pi \\\\ z &=& |z|e^{i\varphi} \\ & = & 1\cdot e^{i\cdot ( \frac{\pi}{2}+2k\pi) } \\ \mathbf{z} & \mathbf{=} & \mathbf{ e^{i\cdot ( \frac{\pi}{2}+2k\pi) }} \\ \end{array}\)

 

\(\begin{array}{|rcll|} \hline \sqrt[3]{i} \\ &=& (i)^{\frac13} \\ &=& \left( e^{i\cdot ( \frac{\pi}{2}+2k\pi)}\right)^{\frac13} \\ &=& e^{i\cdot \left( \frac{\frac{\pi}{2}+2k\pi}{3} \right)} \\ &=& e^{i\cdot \left( \frac{\pi}{6}+\frac{2}{3}\cdot k\pi \right) } \quad & | \quad k =(0,1,2) \\\\ \sqrt[3]{i} &=& e^{i\cdot \left( \frac{\pi}{6} \right)} \quad & | \quad k = 0 \\ &=& \cos( \frac{\pi}{6} ) + i \cdot \sin(\frac{\pi}{6} ) \quad & | \quad \frac{\pi}{6} = 30^{\circ}\\ &=& \cos( 30^{\circ} ) + i \cdot \sin(30^{\circ}) \\ &=& \frac{\sqrt{3}}{2} + i\cdot \frac12 \\ 2\cdot \sqrt[3]{i} &=& 2\cdot \left( \frac{\sqrt{3}}{2} + i\cdot \frac12 \right) \\ \mathbf{2\cdot \sqrt[3]{i}} &\mathbf{=}& \mathbf{\sqrt{3} + i} \\\\ \sqrt[3]{i} &=& e^{i\cdot \left( \frac{\pi}{6}+\frac23 \pi \right)} \quad & | \quad k = 1 \\ &=& e^{i\cdot \left( \frac{5\pi}{6} \right)} \\ &=& \cos(\frac{5\pi}{6}) + i \cdot \sin(\frac{5\pi}{6}) \quad & | \quad \frac{5\pi}{6} = 150^{\circ}\\ &=& \cos( 150^{\circ} ) + i \cdot \sin(150^{\circ}) \\ &=& -\cos( 30^{\circ} ) + i \cdot \sin(30^{\circ}) \\ &=& -\frac{\sqrt{3}}{2} + i\cdot \frac12 \\ 2\cdot \sqrt[3]{i} &=& 2\cdot \left( -\frac{\sqrt{3}}{2} + i\cdot \frac12 \right) \\ \mathbf{2\cdot \sqrt[3]{i}} &\mathbf{=}& \mathbf{-\sqrt{3} + i} \\\\ \sqrt[3]{i} &=& e^{i\cdot \left( \frac{\pi}{6}+2\cdot \frac23 \pi \right)} \quad & | \quad k = 2 \\ &=& e^{i\cdot \left( \frac{3\pi}{2} \right)} \\ &=& \cos(\frac{3\pi}{2}) + i \cdot \sin(\frac{3\pi}{2}) \quad & | \quad \frac{3\pi}{2} = 270^{\circ}\\ &=& \cos( 270^{\circ} ) + i \cdot \sin(270^{\circ}) \\ &=& 0 + i \cdot \sin(90^{\circ}) \\ &=& -i \\ 2\cdot \sqrt[3]{i} &=& 2\cdot( -i ) \\ \mathbf{2\cdot \sqrt[3]{i}} &\mathbf{=}& \mathbf{-2i} \\\\ \hline \end{array}\)


All 3rd roots of \(8 i\) :
\(\sqrt{3} + i \\ -\sqrt{3} + i \\ -2i\)

 

laugh

 Dec 12, 2017
 #4
avatar
0

Simplify the following:
sqrt(4 i + 3)

 

Express 4 i + 3 as a square using 4 i + 3 = 4 + 4 i + i^2, then look to factor.
3 + 4 i = 4 + 4 i - 1 = 4 + 4 i + i^2 = (i + 2)^2:
 sqrt((i + 2)^2 ) 

                                                                                                                                                     

For all complex z with Re(z)>0, sqrt(z^2) = z.
Cancel exponents. sqrt((2 + i)^2) = i + 2:
2 + i    and    -2 - i

 Dec 12, 2017
 #5
avatar
0

Simplify the following:
(8 i)^(1/3)
 
Express 8 i as a cube using 8 i = 3 sqrt(3) + 9 i + 3 sqrt(3) i^2 + i^3, then look to factor.

8 i = 3 sqrt(3) + 9 i - 3 sqrt(3) - i = 3 sqrt(3) + 9 i + 3 sqrt(3) i^2 + i^3 = (sqrt(3))^3 + 3 (sqrt(3))^2 i + 3 sqrt(3) i^2 + i^3 = (sqrt(3) + i)^3:
 ((sqrt(3) + i)^3 )^(1/3)
 

For all complex z with -π/3 Cancel exponents. ((sqrt(3) + i)^3)^(1/3) = sqrt(3) + i:

sqrt(3) + i      -sqrt(3) + i        -2i

 Dec 12, 2017

19 Online Users

avatar