We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
38
2
avatar

Altitudes $\overline{AD}$ and $\overline{BE}$ of $\triangle ABC$ intersect at $H$. If $\angle BAC = 54^\circ$ and $\angle ABC = 52^\circ$, then what is $\angle AHB$?

 Nov 17, 2019
 #1
avatar
0

the figure doesn not show any other angles if u draw it out

am i missing somehting??

 Nov 17, 2019
 #2
avatar+2490 
+2

 

 

Note that all angles in a triangle sum to 180.

 

 

Notice \(\Delta ABE\), Angle BEA is 90, angle A is 54, so angle ABE is 180 - 90 - 54 = 36.

 

 

Notice \(\Delta BDA\), Angle HDB is 90, angle B is 52, so angle DAB is 180 - 90 - 52 = 38

 

Notice \(\Delta ABH\), Angle ABE is 36, angle DAB is 38, so angle AHB is 180 - 36 - 38 = 106

 Nov 17, 2019

36 Online Users

avatar
avatar