+0  
 
0
92
3
avatar

Find all solutions for triangle and round to nearest tenth.

A = 40°, B = 60°, c = 20

(capital A, B, C are angles and lowercase a, b, c are the sides of triangle)

thank you :)

Guest Mar 7, 2018

Best Answer 

 #3
avatar+7048 
+2

(Since there is no right angle, there is no hypotenuse smiley)
 

A = 40°, B = 60°, c = 20

 

Let  a  be the length of the side opposite angle A.

Let  b  be the length of the side opposite angle B.

Let  C  be the measure of the angle opposite side c .

 

The sum of the angle measures in a triangle is  180°  , so...

 

A + B + C  =  180°

C  =  180° - A - B

C  =  180° - 40° - 60°

C  =  80°

 

Using the Law of Sines...

 

\(\begin{array}\ \frac{b}{\sin B}&=&\frac{c}{\sin C} \\ \frac{b}{\sin 60°}&=&\frac{20}{\sin 80°} \\ \quad b&=&\frac{20\sin60°}{\sin 80°} \\ \quad {\color{purple}b}&{\color{purple}\approx}&{\color{purple}17.6} \\~\\ \frac{a}{\sin A}&=&\frac{c}{\sin C} \\ \frac{a}{\sin 40°}&=&\frac{20}{\sin 80°} \\ \quad a&=&\frac{20\sin40°}{\sin 80°} \\ \quad {\color{purple}a}&{\color{purple}\approx}&{\color{purple}13.1 } \end{array}\)

 

(Also...this is not the ambiguous case...the ambiguous case is SSA)

hectictar  Mar 7, 2018
edited by hectictar  Mar 7, 2018
edited by hectictar  Mar 7, 2018
Sort: 

3+0 Answers

 #1
avatar+68 
0

Picture time! :D:D (I filled in B since \(180-(40+60) = 80\))

To solve for other sides, we can do the sine of the angles and add "x" whenever we need to solve for a variable.

\(sin(x)=\frac{opposite}{hypotenuse}\)

We have 20 units for c, so let's find a, since that's the opposite of A.

\(sin(A)=\frac{a}{c}\)

\(sin(40)=\frac{x}{20}\)

\(x = 20sin(40)\)

\(x = 14.90226320958​\)

\(x = 15\) \(units\)

 

Now that I solved for c, try and find b with the same method.

CoopTheDupe  Mar 7, 2018
 #2
avatar
0

Alas as this is not a right triangle the basic trig ratios won't give you the correct answer. Here you need to employ the sin rule ie a/sinA = b/sinB = c/sinC

Guest Mar 7, 2018
 #3
avatar+7048 
+2
Best Answer

(Since there is no right angle, there is no hypotenuse smiley)
 

A = 40°, B = 60°, c = 20

 

Let  a  be the length of the side opposite angle A.

Let  b  be the length of the side opposite angle B.

Let  C  be the measure of the angle opposite side c .

 

The sum of the angle measures in a triangle is  180°  , so...

 

A + B + C  =  180°

C  =  180° - A - B

C  =  180° - 40° - 60°

C  =  80°

 

Using the Law of Sines...

 

\(\begin{array}\ \frac{b}{\sin B}&=&\frac{c}{\sin C} \\ \frac{b}{\sin 60°}&=&\frac{20}{\sin 80°} \\ \quad b&=&\frac{20\sin60°}{\sin 80°} \\ \quad {\color{purple}b}&{\color{purple}\approx}&{\color{purple}17.6} \\~\\ \frac{a}{\sin A}&=&\frac{c}{\sin C} \\ \frac{a}{\sin 40°}&=&\frac{20}{\sin 80°} \\ \quad a&=&\frac{20\sin40°}{\sin 80°} \\ \quad {\color{purple}a}&{\color{purple}\approx}&{\color{purple}13.1 } \end{array}\)

 

(Also...this is not the ambiguous case...the ambiguous case is SSA)

hectictar  Mar 7, 2018
edited by hectictar  Mar 7, 2018
edited by hectictar  Mar 7, 2018

25 Online Users

avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy