+0  
 
0
1293
3
avatar

An empty rectangular tank is 70 cm long and 50 cm wide. It is being filled with water flowing from a tap at a rate of 10000 ml per minute . If it takes 14 minutes to fill the tank to its brim, find the height of the tank.

 Jan 29, 2016

Best Answer 

 #3
avatar+26387 
+15

An empty rectangular tank is 70 cm long and 50 cm wide. It is being filled with water flowing from a tap at a rate of 10000 ml per minute . If it takes 14 minutes to fill the tank to its brim, find the height of the tank.

 

1.

\(\begin{array}{rcll} V_{\text{tank}} &=& l\cdot w \cdot h \\ V_{\text{tank}} &=& 70\ cm\cdot 50\ cm \cdot h \\ V_{\text{tank}} &=& 3500\ cm^2 \cdot h \\ \end{array}\)

 

2.

\(\begin{array}{rcll} V_{\text{tank}} &=& \frac{10000\ ml}{\text{min.}} \cdot 14\ \text{min.} \\ V_{\text{tank}} &=& 10000\ ml \cdot 14 \\ V_{\text{tank}} &=& 14 \cdot 10000\ ml \qquad \boxed{ ~ 1\ ml = 1\ cm^3 ~} \\ V_{\text{tank}} &=& 14 \cdot 10000\ cm^3\\ \end{array}\)

 

3.

\(\begin{array}{rclcl} V_{\text{tank}} = 3500\ cm^2 \cdot h &=& 14 \cdot 10000\ cm^3\\ 3500\ cm^2 \cdot h &=& 14 \cdot 10000\ cm^3\\ h &=& \frac{ 14 \cdot 10000\ cm^3} {3500\ cm^2} \\ h &=& \frac{ 14 \cdot 10000} {3500}\ cm \\ h &=& 40 \ cm\\ \end{array}\)

 

The height of the tank is 40 cm

 

laugh

 Jan 29, 2016
 #1
avatar+8581 
0

what is your formula for this? Please answer so I can help you :)

 Jan 29, 2016
 #2
avatar+2498 
0

Vrectangular=L*W*H

 

Vrectangular-capacity

L-long

W-wide

H-height

 

if it fulls it in 14 minutes in rate of 10000 ml per minute so after 14 minutes:

 

14*10000=140000

140000=Vrectangular 

 

So we know:

140000=70*50*H

H=140000/(70*50)

H=40

 

Answer:40

 Jan 29, 2016
 #3
avatar+26387 
+15
Best Answer

An empty rectangular tank is 70 cm long and 50 cm wide. It is being filled with water flowing from a tap at a rate of 10000 ml per minute . If it takes 14 minutes to fill the tank to its brim, find the height of the tank.

 

1.

\(\begin{array}{rcll} V_{\text{tank}} &=& l\cdot w \cdot h \\ V_{\text{tank}} &=& 70\ cm\cdot 50\ cm \cdot h \\ V_{\text{tank}} &=& 3500\ cm^2 \cdot h \\ \end{array}\)

 

2.

\(\begin{array}{rcll} V_{\text{tank}} &=& \frac{10000\ ml}{\text{min.}} \cdot 14\ \text{min.} \\ V_{\text{tank}} &=& 10000\ ml \cdot 14 \\ V_{\text{tank}} &=& 14 \cdot 10000\ ml \qquad \boxed{ ~ 1\ ml = 1\ cm^3 ~} \\ V_{\text{tank}} &=& 14 \cdot 10000\ cm^3\\ \end{array}\)

 

3.

\(\begin{array}{rclcl} V_{\text{tank}} = 3500\ cm^2 \cdot h &=& 14 \cdot 10000\ cm^3\\ 3500\ cm^2 \cdot h &=& 14 \cdot 10000\ cm^3\\ h &=& \frac{ 14 \cdot 10000\ cm^3} {3500\ cm^2} \\ h &=& \frac{ 14 \cdot 10000} {3500}\ cm \\ h &=& 40 \ cm\\ \end{array}\)

 

The height of the tank is 40 cm

 

laugh

heureka Jan 29, 2016

3 Online Users