An empty rectangular tank is 70 cm long and 50 cm wide. It is being filled with water flowing from a tap at a rate of 10000 ml per minute . If it takes 14 minutes to fill the tank to its brim, find the height of the tank.
An empty rectangular tank is 70 cm long and 50 cm wide. It is being filled with water flowing from a tap at a rate of 10000 ml per minute . If it takes 14 minutes to fill the tank to its brim, find the height of the tank.
1.
\(\begin{array}{rcll} V_{\text{tank}} &=& l\cdot w \cdot h \\ V_{\text{tank}} &=& 70\ cm\cdot 50\ cm \cdot h \\ V_{\text{tank}} &=& 3500\ cm^2 \cdot h \\ \end{array}\)
2.
\(\begin{array}{rcll} V_{\text{tank}} &=& \frac{10000\ ml}{\text{min.}} \cdot 14\ \text{min.} \\ V_{\text{tank}} &=& 10000\ ml \cdot 14 \\ V_{\text{tank}} &=& 14 \cdot 10000\ ml \qquad \boxed{ ~ 1\ ml = 1\ cm^3 ~} \\ V_{\text{tank}} &=& 14 \cdot 10000\ cm^3\\ \end{array}\)
3.
\(\begin{array}{rclcl} V_{\text{tank}} = 3500\ cm^2 \cdot h &=& 14 \cdot 10000\ cm^3\\ 3500\ cm^2 \cdot h &=& 14 \cdot 10000\ cm^3\\ h &=& \frac{ 14 \cdot 10000\ cm^3} {3500\ cm^2} \\ h &=& \frac{ 14 \cdot 10000} {3500}\ cm \\ h &=& 40 \ cm\\ \end{array}\)
The height of the tank is 40 cm
Vrectangular=L*W*H
Vrectangular-capacity
L-long
W-wide
H-height
if it fulls it in 14 minutes in rate of 10000 ml per minute so after 14 minutes:
14*10000=140000
140000=Vrectangular
So we know:
140000=70*50*H
H=140000/(70*50)
H=40
Answer:40
An empty rectangular tank is 70 cm long and 50 cm wide. It is being filled with water flowing from a tap at a rate of 10000 ml per minute . If it takes 14 minutes to fill the tank to its brim, find the height of the tank.
1.
\(\begin{array}{rcll} V_{\text{tank}} &=& l\cdot w \cdot h \\ V_{\text{tank}} &=& 70\ cm\cdot 50\ cm \cdot h \\ V_{\text{tank}} &=& 3500\ cm^2 \cdot h \\ \end{array}\)
2.
\(\begin{array}{rcll} V_{\text{tank}} &=& \frac{10000\ ml}{\text{min.}} \cdot 14\ \text{min.} \\ V_{\text{tank}} &=& 10000\ ml \cdot 14 \\ V_{\text{tank}} &=& 14 \cdot 10000\ ml \qquad \boxed{ ~ 1\ ml = 1\ cm^3 ~} \\ V_{\text{tank}} &=& 14 \cdot 10000\ cm^3\\ \end{array}\)
3.
\(\begin{array}{rclcl} V_{\text{tank}} = 3500\ cm^2 \cdot h &=& 14 \cdot 10000\ cm^3\\ 3500\ cm^2 \cdot h &=& 14 \cdot 10000\ cm^3\\ h &=& \frac{ 14 \cdot 10000\ cm^3} {3500\ cm^2} \\ h &=& \frac{ 14 \cdot 10000} {3500}\ cm \\ h &=& 40 \ cm\\ \end{array}\)
The height of the tank is 40 cm