+0  
 
0
36
1
avatar

Let $p(x)$ be defined on $2 \le x \le 10$ such that $$p(x) = \begin{cases} x + 1 &\quad \lfloor x \rfloor\text{ is prime} \\ p(y) + (x + 1 - \lfloor x \rfloor) &\quad \text{otherwise} \end{cases}$$ where $y$ is the greatest prime factor of $\lfloor x\rfloor.$ Express the range of $p$ in interval notation.
 

 Feb 1, 2021
 #1
avatar
0

The function increases at each prime, so the range is [2,4] U [5,6] U [7,8].

 Feb 2, 2021

75 Online Users

avatar
avatar
avatar
avatar
avatar
avatar