+0  
 
0
870
1
avatar

An octal (base 8) number is a number whose digits can be any of the numbers 0 through 7. In each case, determine how many 4-digit octal numbers are possible.

The first digit can be 0.
The first digit cannot be 0
 Mar 13, 2015

Best Answer 

 #1
avatar+130516 
+5

If the first digit can be 0, we have 8 possibilities for each place....

So 8^4  = 4096 numbers

 

If the first digit can't be 0, we have 7 ways to fill the first position and 8 ways for the other three positions.

7 * 8^3 = 3584 numbers

 

  

 Mar 13, 2015
 #1
avatar+130516 
+5
Best Answer

If the first digit can be 0, we have 8 possibilities for each place....

So 8^4  = 4096 numbers

 

If the first digit can't be 0, we have 7 ways to fill the first position and 8 ways for the other three positions.

7 * 8^3 = 3584 numbers

 

  

CPhill Mar 13, 2015

2 Online Users

avatar