+0  
 
0
41
1
avatar

A line passing through the intersection point of the two lines x+2y+3= 0 and 2x-y+a/2 = 0 also passes through two other points (9, −8)  and (−17, 9). What is the value of a?

 Dec 26, 2020
 #1
avatar+114320 
+1

x + 2y  + 3    = 0    (1)

2x  - y + a/2  = 0 ⇒    4x - 2y + a   =  0  (2)

 

Add (1)  and (2)

 

5x + (3 +a)  = 0

 

x =  -(3 + a) /  5 

 

Sub this into (1) for x

 

-(3 + a)   / 5  +  2y  + 3    =  0

 

2y  =  -3 + (3 + a)  / 5

 

y = (-12 + a)  / 10

 

So......the  intersection point  is   [x , y ]  =   [- (3 + a) /5 , (-12+ a) /10)]

 

The slope of the line through the given points is    [ 9 - - 8 ]  / [-17 - 9]  =  -17/26

 

And the equation of this line  is

 

y = (-17/26) ( x -9)  - 8 

 

y = (-17/26) (x)  +  153/26   -208/26

 

y = (-17/26)x - 55/26

 

Note that this line  contains the intersection point of the  given lines....so   filling  in the values  for x and y

 

(-12 + a) / 10  = (-17/26) ( -(3 + a) / 5)  - 55/26

 

Multiply through by 260

 

26 (-12 + a)  = 2 ( -17) (-3-a) - 550

 

-312 + 26a  =  -34 (-3 - a) - 550

 

-312 +  26a  =  102 + 34a  - 550

 

-312 + 26a  =  34a -448

 

136  =  8a

 

a  =17

 

The intersection point  is   (-4, 1/2)

 

See the graph here  :   https://www.desmos.com/calculator/gsq2nbtdxq

 

 

 

 

cool cool cool

 Dec 26, 2020
edited by CPhill  Dec 26, 2020

25 Online Users

avatar
avatar