the pilot of a helicopter sights a fire at an angle of depression of 11 degrees. the helicopters altitude is 1700 feet.to the nearest foot, what is the horizontal distance from the helicopter to the fire?
tan(angle of depression) = height/horizontal distance
so horizontal distance = height/tan(angle of depression)
$${\frac{{\mathtt{1\,700}}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{11}}^\circ\right)}}} = {\mathtt{8\,745.741\: \!827\: \!136\: \!861\: \!007\: \!1}}$$
horizontal distance ≈ 8746 ft
.
tan(angle of depression) = height/horizontal distance
so horizontal distance = height/tan(angle of depression)
$${\frac{{\mathtt{1\,700}}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{11}}^\circ\right)}}} = {\mathtt{8\,745.741\: \!827\: \!136\: \!861\: \!007\: \!1}}$$
horizontal distance ≈ 8746 ft
.