+0  
 
0
519
2
avatar

Side lengths of a right angle triangle are 1145, 804 and 815. What size are the other two angles?

 Jan 17, 2016

Best Answer 

 #2
avatar+130511 
+5

We also can use the Law of Cosines to determine the angles and side orientations.

 

The angle across from the shortest side =

 

804^2 = 815^2 + 1145^2  - 2(815)(1145) cos(theta)

 

cos ( theta) =  [ 804^2 - 815^2 - 1145^2] / [ -2(815) (1145)]

 

arccos [ 804^2 - 815^2 - 1145^2] / [ -2(815) (1145)]  = theta = about 44.6°

 

Thus.....the angle across from the second longest side  = 90 - 44.6  = about 45.4°

 

 

cool cool cool

 Jan 17, 2016
 #1
avatar
+5

Side lengths of a right angle triangle are 1145, 804 and 815. What size are the other two angles.

 

Sin(815/1145)=0.711790 [This is an assumption, since we do not know which side is the Adjacent side and which side is the Opposite.]

Asin(.711790)=45.38 degrees-one of the other two angles.

180 - [90 + 45.38]=44.62 degrees-the third angle.

 Jan 17, 2016
 #2
avatar+130511 
+5
Best Answer

We also can use the Law of Cosines to determine the angles and side orientations.

 

The angle across from the shortest side =

 

804^2 = 815^2 + 1145^2  - 2(815)(1145) cos(theta)

 

cos ( theta) =  [ 804^2 - 815^2 - 1145^2] / [ -2(815) (1145)]

 

arccos [ 804^2 - 815^2 - 1145^2] / [ -2(815) (1145)]  = theta = about 44.6°

 

Thus.....the angle across from the second longest side  = 90 - 44.6  = about 45.4°

 

 

cool cool cool

CPhill Jan 17, 2016

0 Online Users