In triangle $ABC$, the angles $\angle A$, $\angle B$, $\angle C$ form an arithmetic sequence. If $\angle A = 45^\circ$, then what is $\angle C$, in degrees?
We can write this as an equation, getting:
\(45^\circ+45^\circ+x+45^\circ+2x=180^\circ\)
\(135^\circ+3x=180^\circ\)
\(3x=45^\circ\)
\(x=15^\circ\)
We can now add \(2x\) to \(45^\circ\) and get:
\(30^\circ+45^\circ\)
\(75^\circ\)
We get that angle \(C=75^\circ\)
Answer: 75°