Have an answer to each box to correctly complete the derivation of a formula for the area of a sector of a circle.

Suppose a sector of a circle with radius r has a central angle of θ

. Since a sector is a fraction of a __________ circle, the ratio of a sector's area A to the circle's area is equal to the ratio of the central angle to the measure of a full rotation of the circle. A full rotation of a circle is 2π radians. This proportion can be written as A/πr2=_____________ Multiply both sides by πr2 and simplify to get ________, where θ is the measure of the central angle of the sector and r is the radius of the circle.

Please help guys, you rock! I am not very good at proofs haha

wertyusop
Jan 19, 2018