+0  
 
-1
179
2
avatar+297 

This is  a hard one see if you guys can solve it! Try to!

 

Find the least positive four-digit solution to the following system of congruences.

\(\begin{align*} 7x &\equiv 21 \pmod{14} \\ 2x+13 &\equiv 16 \pmod{9} \\ -2x+1 &\equiv x \pmod{25} \\ \end{align*}\)

 Dec 4, 2022
 #1
avatar
0

The system reduces to

n = 7 mod 14

n = 6 mod 9

n = 2 mod 25

 

By the Chinese Remainder Theorem, the smallest four-digit number hat works is 2877.

 Dec 4, 2022
 #2
avatar+297 
-2

I don't think 2877 is correct..

 Dec 7, 2022

0 Online Users