ANSWER + EXPLANATIONS PLEASE
if A represents an angle such that sin2A = tanA - Cos2A
Then, sinA- CosA =
A) -\(-\sqrt{2}\)
b) 0
c)1
d)2\(\sqrt{2}\)
sin2A = tanA - Cos2A
Here's a graph of the intersections of both sides.......https://www.desmos.com/calculator/05szgkl0av
At [45° +/- 180n] °...where n is an integer.....sinA = cosA so the answer is 0
At [135° +/- 180n] °...where n is an integer.....cosA = -sinA........and sinA = sqrt(2) / 2 ......so.............sinA - cosA = sinA + sinA = sqrt(2)/2 + sqrt(2)/2 = sqrt(2)
![]()