+0  
 
-1
1
723
2
avatar+2499 

Trying to find out if these are equal, I don't know how to open the brackets.

 Nov 28, 2020
 #1
avatar+118687 
0

Hi Solveit,

 

Perhaps someone can tell me what the U symbol is,  I have not seen it before.   frown

 Dec 26, 2020
 #2
avatar+118687 
+2

Solveit tells me that U just means union.

I have never seen it used like this before so anything I write is pure guess work.

 

It seems to me that 

 

   \(\displaystyle \cup _{n=1}^{5}\;A_n = \{A_1, A_2, A_3,A_4, A_5\}\)

 

\(\displaystyle \cup _{k=1}^{n}\;A_n = \{A_1, A_2, A_3,A_4, A_5, ....., A_n\}\\~\\ (\displaystyle \cup _{k=1}^{n}\;A_n) = \{A_1, A_2, A_3,A_4, A_5, ....., A_n\}\\~\\ \displaystyle \cup _{k=1}^{5}(\displaystyle \cup _{k=1}^{n}\;A_n) = \{A_1\}\cup \{ A_1, A_2\} \cup \{ A_1, A_2, A_3\} \cup \{ A_1, A_2, A_3, A_4\}\cup \{ A_1, A_2, A_3, A_4,A_5\}\\~\\ \displaystyle \cup _{k=1}^{5}(\displaystyle \cup _{k=1}^{n}\;A_n) =\{ A_1, A_2, A_3, A_4,A_5\}\\~\\ \displaystyle \cup _{k=1}^{5}(\displaystyle \cup _{k=1}^{n}\;A_n) =\displaystyle \cup _{k=1}^{5}\;A_n\\~\\\)

 

LaTex:

\displaystyle \cup _{k=1}^{n}\;A_n = \{A_1, A_2, A_3,A_4, A_5, ....., A_n\}\\~\\
(\displaystyle \cup _{k=1}^{n}\;A_n) = \{A_1, A_2, A_3,A_4, A_5, ....., A_n\}\\~\\

\displaystyle \cup _{k=1}^{5}(\displaystyle \cup _{k=1}^{n}\;A_n) = \{A_1\}\cup \{ A_1, A_2\}  \cup \{ A_1, A_2, A_3\} \cup \{ A_1, A_2, A_3, A_4\}\cup \{ A_1, A_2, A_3, A_4,A_5\}\\~\\
\displaystyle \cup _{k=1}^{5}(\displaystyle \cup _{k=1}^{n}\;A_n) =\{ A_1, A_2, A_3, A_4,A_5\}\\~\\
\displaystyle \cup _{k=1}^{5}(\displaystyle \cup _{k=1}^{n}\;A_n) =\displaystyle \cup _{k=1}^{5}\;A_n\\~\\

 Dec 26, 2020

3 Online Users

avatar
avatar
avatar