arg(Z/i+1) when Z=-1+i When I think of this I just make it -1+i/i+1 but I dont know what to do next
Let's simplify -1+i/i+1 multiply numerator and denominator by i-1...so we have
[i - 1][i-1]/[(i+1)(i-1)] = (i^2 - 2i + 1)/(i^2 -1) = (-2i) / (-2) = i = 0 + 1i
tan(1/0) = undefined = pi/2
So...arg(z) = pi/2 + n*(2pi) for n = 0, ±1,±2, ±3.......
$$\frac{-1+i}{i+1}=\frac{(-1+i)(i-1)}{(i+1)(i-1)}$$
$$\frac{(-1+i)(i-1)}{(i+1)(i-1)}=\frac{-i+1+i^2-i}{i^2-i+i-1}$$
$$\frac{-i+1+i^2-i}{i^2-i+i-1}=\frac{-2i}{-2}$$ because i2 = -1
$$\frac{-2i}{-2}=i$$
Now arg(i) = 1 because arg(x+iy) = √(x2 + y2)
arg(i) = √(02 + (1)2) = 1
.