+0  
 
0
837
2
avatar

arg(Z/i+1) when Z=-1+i When I think of this I just make it -1+i/i+1 but I dont know what to do next

 Oct 30, 2014

Best Answer 

 #2
avatar+130511 
+5

Let's simplify -1+i/i+1   multiply numerator and denominator by i-1...so we have

[i - 1][i-1]/[(i+1)(i-1)] = (i^2 - 2i + 1)/(i^2 -1) = (-2i) / (-2) = i =  0 + 1i

tan(1/0) = undefined = pi/2

So...arg(z) = pi/2 + n*(2pi) for n = 0, ±1,±2, ±3.......

 

 Oct 30, 2014
 #1
avatar+33661 
+5

$$\frac{-1+i}{i+1}=\frac{(-1+i)(i-1)}{(i+1)(i-1)}$$

 

$$\frac{(-1+i)(i-1)}{(i+1)(i-1)}=\frac{-i+1+i^2-i}{i^2-i+i-1}$$

 

$$\frac{-i+1+i^2-i}{i^2-i+i-1}=\frac{-2i}{-2}$$   because i2 = -1

 

$$\frac{-2i}{-2}=i$$

 

Now arg(i) = 1  because arg(x+iy) = √(x2 + y2)

 

arg(i) = √(02 + (1)2) = 1

.

 Oct 30, 2014
 #2
avatar+130511 
+5
Best Answer

Let's simplify -1+i/i+1   multiply numerator and denominator by i-1...so we have

[i - 1][i-1]/[(i+1)(i-1)] = (i^2 - 2i + 1)/(i^2 -1) = (-2i) / (-2) = i =  0 + 1i

tan(1/0) = undefined = pi/2

So...arg(z) = pi/2 + n*(2pi) for n = 0, ±1,±2, ±3.......

 

CPhill Oct 30, 2014

0 Online Users