+0  
 
0
137
3
avatar+1038 

The interior angles of a quadrilateral form an arithmetic sequence. If the measure of the largest angle is 129 degrees, what is the measure of the second largest angle, in degrees?

 

Thanks :D

Sort: 

3+0 Answers

 #1
avatar
+1

Sum = [First term + last term] / 2 x Number of terms

360  =[F + 129] / 2 x 4, solve for F

720 =[F + 129] x 4

180 =[F + 129]

F = 180 - 129

F =51 degrees - the smallest angle

 

N =[L - F] / D + 1

4 =[129 - 51] / D

3 =[78] /D

3D = 78

D = 78/3

D =26 - diffrence between the 4 angles

51+26 =77 degrees - the second smallest angle

77+26 =103 degrees - the second largest angle. So that you have:

51, 77, 103, 129 angles in degrees.

Guest Jan 9, 2018
 #2
avatar+86602 
+1

The interior angles of a quadrilateral  sum to 360°

 

Let  a1 be the smallest angle   and d  be the common difference between the angles

 

So   we have the following equation

 

129  =  a1 + 3d    ⇒  129 - 3d  =  a1     (1)

 

And

 

a1 + (a1 + d)  + (a1 + 2d )  +  129   =   360     (2)

 

Sub  (1)  into (2)  and simplifying we have that

 

129 - 3d +  (129 - 2d)  + ( 129 - d) +  129   =  360

 

516  - 6d   =  360      rearrrange as

 

516  -  360  =  6d

 

156   =  6d          divide both sides by 6

 

26   = d

 

And using  (1) we have that   129 - 3(26)    =  a1     =  51°

 

So.....the second largest angle is    51  + 2(26)   =  103°

 

 

cool cool cool

CPhill  Jan 9, 2018
 #3
avatar+1038 
0

👍 :D


19 Online Users

avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy