+0

# Arithmetic Sequences

0
82
3
+789

The interior angles of a quadrilateral form an arithmetic sequence. If the measure of the largest angle is 129 degrees, what is the measure of the second largest angle, in degrees?

Thanks :D

Sort:

#1
+1

Sum = [First term + last term] / 2 x Number of terms

360  =[F + 129] / 2 x 4, solve for F

720 =[F + 129] x 4

180 =[F + 129]

F = 180 - 129

F =51 degrees - the smallest angle

N =[L - F] / D + 1

4 =[129 - 51] / D

3 =[78] /D

3D = 78

D = 78/3

D =26 - diffrence between the 4 angles

51+26 =77 degrees - the second smallest angle

77+26 =103 degrees - the second largest angle. So that you have:

51, 77, 103, 129 angles in degrees.

Guest Jan 9, 2018
#2
+84253
+1

The interior angles of a quadrilateral  sum to 360°

Let  a1 be the smallest angle   and d  be the common difference between the angles

So   we have the following equation

129  =  a1 + 3d    ⇒  129 - 3d  =  a1     (1)

And

a1 + (a1 + d)  + (a1 + 2d )  +  129   =   360     (2)

Sub  (1)  into (2)  and simplifying we have that

129 - 3d +  (129 - 2d)  + ( 129 - d) +  129   =  360

516  - 6d   =  360      rearrrange as

516  -  360  =  6d

156   =  6d          divide both sides by 6

26   = d

And using  (1) we have that   129 - 3(26)    =  a1     =  51°

So.....the second largest angle is    51  + 2(26)   =  103°

CPhill  Jan 9, 2018
#3
+789
0

👍 :D

### 29 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details