Let a1, a2, a3, ..., a10, a11, a12 be an arithmetic sequence. If a1 + a2 = 4 and a2 + a3 = 5, then find a1.
Let a1, a2, a3, ..., a10, a11, a12 be an arithmetic sequence. If a1 + a2 = 4 and a2 + a3 = 5, then find a1.
a1 + a2 = 4 & a2 + a3 = 5
Since it's an arithmetic sequence, the difference between adjacent terms is the same.
Call that difference, i.e., the increment, let's call it "n". Just keep this in mind for a while.
a2 + a3 = 5
a1 + a2 = 4
Subtract one from the other
a3 – a1 = 1
Since a3 is (a1 + n + n)
(a1 + n + n) – a1 = 1
2n = 1 therefore n = 0.5
Referring back to the top
a1 + a2 = 4
a2 = (a1 + 0.5) so plug it in
a1 + (a1 + 0.5) = 4
2a1 + 0.5 = 4
2a1 = 4 – 0.5 = 3.5
a1 = 3.5 / 2
a1 = 1.75
check answer
a1 = 1.75
a2 = 2.25 a1 + a2 = 4
a3 = 2.75 a2 + a3 = 5
.