+0  
 
0
444
4
avatar+4 

Is there a way to define a variable to use an equation? E.x.: 3x^2-2x+5=y, and I want to assign x a value without changing it out. Is it possible?

CatBoy13  Dec 12, 2014

Best Answer 

 #3
avatar+94120 
+10

Welcome to web2.0calc forum Catboy13  

Umm - Interesting question.  

 

$$\begin{array}{rll}
3x^2-2x+5&=&y\\\\
3x^2-2x&=&y-5\\\\
x^2-\frac{2}{3}x&=&\frac{y-5}{3}\\\\
x^2-\frac{2}{3}x+\left(\frac{2}{6}\right)^2&=&\frac{y-5}{3}+\left(\frac{2}{6}\right)^2\\\\
x^2-\frac{2}{3}x+\left(\frac{1}{3}\right)^2&=&\frac{y-5}{3}+\left(\frac{1}{3}\right)^2\\\\
x^2-\frac{2}{3}x+\left(\frac{1}{3}\right)^2&=&\frac{3(y-5)}{9}+\frac{1}{9}\\\\
\left(x-\frac{1}{3}\right)^2&=&\frac{3y-15+1}{9}\\\\
\left(x-\frac{1}{3}\right)^2&=&\frac{3y-14}{9}\\\\
x-\frac{1}{3}&=&\pm\sqrt{\frac{3y-14}{9}}\\\\
x&=&\frac{1}{3}\pm\sqrt{\frac{3y-14}{9}}\\\\
x&=&\frac{1\pm\sqrt{3y-14}}{3}}\\














\end{array}$$

Melody  Dec 13, 2014
 #1
avatar+7188 
0

I believe it is possible....but I might be wrong...

happy7  Dec 12, 2014
 #2
avatar
0

If you first define a function f as

$${f}{\left({\mathtt{x}}\right)} = {\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{5}}$$

 

then for any particular x the function f(x) has a value and you can write things such as

f(2) + f(0) - 4 = 14

Guest Dec 12, 2014
 #3
avatar+94120 
+10
Best Answer

Welcome to web2.0calc forum Catboy13  

Umm - Interesting question.  

 

$$\begin{array}{rll}
3x^2-2x+5&=&y\\\\
3x^2-2x&=&y-5\\\\
x^2-\frac{2}{3}x&=&\frac{y-5}{3}\\\\
x^2-\frac{2}{3}x+\left(\frac{2}{6}\right)^2&=&\frac{y-5}{3}+\left(\frac{2}{6}\right)^2\\\\
x^2-\frac{2}{3}x+\left(\frac{1}{3}\right)^2&=&\frac{y-5}{3}+\left(\frac{1}{3}\right)^2\\\\
x^2-\frac{2}{3}x+\left(\frac{1}{3}\right)^2&=&\frac{3(y-5)}{9}+\frac{1}{9}\\\\
\left(x-\frac{1}{3}\right)^2&=&\frac{3y-15+1}{9}\\\\
\left(x-\frac{1}{3}\right)^2&=&\frac{3y-14}{9}\\\\
x-\frac{1}{3}&=&\pm\sqrt{\frac{3y-14}{9}}\\\\
x&=&\frac{1}{3}\pm\sqrt{\frac{3y-14}{9}}\\\\
x&=&\frac{1\pm\sqrt{3y-14}}{3}}\\














\end{array}$$

Melody  Dec 13, 2014
 #4
avatar+94120 
0

I have added this to the Sticky Topic - "Great Answers to Learn From"

Melody  Dec 14, 2014

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.