+0  
 
0
27
2
avatar+400 

The entries in a certain row of Pascal's triangle are
\[1, n, \dots, n, 1.\]
The average of the entries in this row is $4/3$. Find $n$.

 Jan 18, 2024
 #1
avatar+129881 
+1

Average of all entries in any row of Pascal's Triangle =   2^(n)/ (n + 1)  where n = 0,1,2,3......

 

So

                                                                         

2^n / ( n +1)  =  4/3

 

2^n =  (4/3) (n + 1)

 

2^n  = (4/3) n + (4/3)

 

Note that this  is true when n  = 2

 

cool cool cool

 Jan 18, 2024

2 Online Users

avatar