+0  
 
0
1
99
1
avatar+10 

Find the largest possible positive integer \(x_{10}\) less than \(2021_{10}\) such that \(d(x_{11})^2=4d(x_{13})\).

 

Notation clarification: \(x_{k}\) is \(x\) in base \(k\)

\(d(x_{k})\) is the sum of the digits of \(x\) in base \(k\)

 Mar 5, 2021
 #1
avatar+10 
0

Note: This can easily be done with simple coding.

 Mar 5, 2021

45 Online Users

avatar
avatar
avatar
avatar
avatar