We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
271
1
avatar+164 

Suppose that p is prime and \(1007_p+306_p+113_p+125_p+6_p=142_p+271_p+360_p\). How many possible values of  p are there?

 Mar 28, 2018
 #1
avatar+22569 
+1

Suppose that p is prime and

\(1007_p+306_p+113_p+125_p+6_p=142_p+271_p+360_p. \)

1007_p+306_p+113_p+125_p+6_p=142_p+271_p+360_p.

How many possible values of  p are there?

 

\(\small{ \begin{array}{|rcll|} \hline 1007_p+306_p+113_p+125_p+6_p &=& 142_p+271_p+360_p \\\\ \underbrace{p^3+7}_{=1007_p}+\underbrace{3p^2+6}_{=306_p}+ \underbrace{p^2+p+3}_{=113_p} + \underbrace{p^2+2p+5}_{=125_p} +\underbrace{6}_{=6_p} &=& \underbrace{p^2+4p+2}_{=142_p}+ \underbrace{2p^2+7p+1}_{=271_p} + \underbrace{3p^2+6p}_{=360_p} \\ p^3+ 3p^2+ p^2+ p^2 +p +2p+7 +6 +3 +5 + 6 &=& p^2+ 2p^2+ 3p^2 +4p+ 7p+6p +2 + 1 \\ p^3+ 5p^2+3p +27 &=& 6p^2 +17p +3 \\ p^3+ 5p^2-6p^2+3p-17p +27-3 &=& 0 \\ p^3-p^2-14p +24 &=& 0 \\ (p-2)(p^2+p-12) &=& 0 \\ (p-2)(p-3)(p+4) &=& 0 \\ \hline \end{array} }\)

 

The only primes that will work are \( p=2 \) or \(p=3\)

 

laugh

 Mar 28, 2018
edited by heureka  Mar 28, 2018

16 Online Users

avatar
avatar
avatar