+0  
 
+1
123
1
avatar+162 

Suppose that p is prime and \(1007_p+306_p+113_p+125_p+6_p=142_p+271_p+360_p\). How many possible values of  p are there?

Creeperhissboom  Mar 28, 2018
 #1
avatar+19990 
+1

Suppose that p is prime and

\(1007_p+306_p+113_p+125_p+6_p=142_p+271_p+360_p. \)

1007_p+306_p+113_p+125_p+6_p=142_p+271_p+360_p.

How many possible values of  p are there?

 

\(\small{ \begin{array}{|rcll|} \hline 1007_p+306_p+113_p+125_p+6_p &=& 142_p+271_p+360_p \\\\ \underbrace{p^3+7}_{=1007_p}+\underbrace{3p^2+6}_{=306_p}+ \underbrace{p^2+p+3}_{=113_p} + \underbrace{p^2+2p+5}_{=125_p} +\underbrace{6}_{=6_p} &=& \underbrace{p^2+4p+2}_{=142_p}+ \underbrace{2p^2+7p+1}_{=271_p} + \underbrace{3p^2+6p}_{=360_p} \\ p^3+ 3p^2+ p^2+ p^2 +p +2p+7 +6 +3 +5 + 6 &=& p^2+ 2p^2+ 3p^2 +4p+ 7p+6p +2 + 1 \\ p^3+ 5p^2+3p +27 &=& 6p^2 +17p +3 \\ p^3+ 5p^2-6p^2+3p-17p +27-3 &=& 0 \\ p^3-p^2-14p +24 &=& 0 \\ (p-2)(p^2+p-12) &=& 0 \\ (p-2)(p-3)(p+4) &=& 0 \\ \hline \end{array} }\)

 

The only primes that will work are \( p=2 \) or \(p=3\)

 

laugh

heureka  Mar 28, 2018
edited by heureka  Mar 28, 2018

41 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.