+0  
 
0
173
1
avatar+1015 

Based on the polynomial remainder theorem, what is the value of the function when x = 3?

AngelRay  May 26, 2018

Best Answer 

 #1
avatar+9722 
+2

(x^4  + 3x^3  -  6x^2  - 12x  -  8) : (x - 3)  =  x^3 + 6x^2 + 12x + 24  remainder  64 

  x^4  - 3x^3                     

 —————

                6x^3  -  6x^2  - 12x  -  8

                6x^3  - 18x^2             

                ——————————

                               12x^2  - 12x  -  8

                               12x^2  - 36x     

                               ———————

                                                24x  -   8

                                                24x  - 72

                                                —————

                                                            64

 

f(3)=64

 

laugh

Omi67  May 26, 2018
 #1
avatar+9722 
+2
Best Answer

(x^4  + 3x^3  -  6x^2  - 12x  -  8) : (x - 3)  =  x^3 + 6x^2 + 12x + 24  remainder  64 

  x^4  - 3x^3                     

 —————

                6x^3  -  6x^2  - 12x  -  8

                6x^3  - 18x^2             

                ——————————

                               12x^2  - 12x  -  8

                               12x^2  - 36x     

                               ———————

                                                24x  -   8

                                                24x  - 72

                                                —————

                                                            64

 

f(3)=64

 

laugh

Omi67  May 26, 2018

27 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.