+0  
 
0
1804
1
avatar+912 

Based on the polynomial remainder theorem, what is the value of the function when x = 3?

 May 26, 2018

Best Answer 

 #1
avatar+12530 
+2

(x^4  + 3x^3  -  6x^2  - 12x  -  8) : (x - 3)  =  x^3 + 6x^2 + 12x + 24  remainder  64 

  x^4  - 3x^3                     

 —————

                6x^3  -  6x^2  - 12x  -  8

                6x^3  - 18x^2             

                ——————————

                               12x^2  - 12x  -  8

                               12x^2  - 36x     

                               ———————

                                                24x  -   8

                                                24x  - 72

                                                —————

                                                            64

 

f(3)=64

 

laugh

 May 26, 2018
 #1
avatar+12530 
+2
Best Answer

(x^4  + 3x^3  -  6x^2  - 12x  -  8) : (x - 3)  =  x^3 + 6x^2 + 12x + 24  remainder  64 

  x^4  - 3x^3                     

 —————

                6x^3  -  6x^2  - 12x  -  8

                6x^3  - 18x^2             

                ——————————

                               12x^2  - 12x  -  8

                               12x^2  - 36x     

                               ———————

                                                24x  -   8

                                                24x  - 72

                                                —————

                                                            64

 

f(3)=64

 

laugh

Omi67 May 26, 2018

1 Online Users

avatar